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ABSTRACT 

Turn Constrained Path Planning Problems 

by 

Victor M. Roman 

Dr. Laxmi Gewali, Examination Committee Chair 
Professor of Computer Science 

University of Nevada, Las Vegas 

We consider the problem of constructing multiple disjoint paths connecting a source point 

s to a target point t in a geometric graph. We require that the paths do not have any 

sharp turn angles. We present a review of turn constrained path planning algorithms 

and also algorithms for constructing disjoint paths. We then combine these techniques 

and present an 0(nlogn) time algorithm for constructing a pair of edge disjoint turn 

constrained paths connecting two nodes in a planar geometric graph. We also consider 

the development of a turn constrained shortest path map in the presence of polygonal 

obstacles. Prototype implementations of the proposed algorithms are also presented. 

These problems have application for trajectory planning for unmanned aerial vehicles 

(UAV). 

in 
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CHAPTER 1 

INTRODUCTION 

The problem of computing shortest path in a weighted network has attracted the inter­

est of many researchers and several efficient algorithms to solve this problem have been 

reported [3, 10]. In a two dimensional Euclidian plane that contains obstacles, the ap­

plication of shortest path is used to determine a collision free path connecting two given 

points. Note that a path that traverses only the free-space is called a collision-free path. 

One of the approaches for finding the shortest collision-free path in 2-dimensions is to 

convert the problem into an equivalent problem in a geometric graph. Specifically, the 

collection of obstacles in 2-dimensions is converted into a graph called the visibility graph 

[10]. It has been formally established that the shortest collision-free path can be com­

puted by finding the shortest path in the visibility graph. The main reason behind this 

fact is that if a shortest path touches the obstacle, then it must touch in one of the ver­

tices. Several variations of shortest-path computations have been considered. One such 

variation is to find a path connecting two given vertices with a minimum number of link 

hops. Such a path is called a link minimized path and efficient algorithms for computing 

such path are reported in [9]. Another variation of shortest-path problem is obtained by 

imposing turn angle constraint. Specifically, it is required to construct a shortest path in 

the presence of obstacles such that the turn implied by consecutive segments in the path 

is no more than a given value. One of the algorithms for computing the turn constrain 

shortest path in two dimensions was reported by Borujerdi and Uhlmann in [1]. 

Several researchers have also considered the problem of computing more than one 

short length path connecting two vertices in a network. One of the early results on 

computing a pair of node disjoint paths connecting two given vertices in a network was 

1 
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given in [13]. 

In this thesis we consider the problem of computing multiple node disjoint shortest 

path that do not contain a sharp turn angle. In Chapter 2 we present an algorithm for 

computing a Turn Constrained Disjoint Path Pair in a planar two dimensional geometric 

network. The algorithm executes in 0(nlogn) time, where n is the number of vertices 

in the network. We then extend the algorithm to compute Turn Constrained k-Disjoint 

Paths running in 0(knlogn) time. In Chapter 3 we address the problem of constructing 

a constrained shortest path map (CSPM). It may be noted that the constrained shortest 

path map is a generalization of the standard shortest path map that is used for construct­

ing shortest paths for a fixed start point s and several query target point t. Once the 

CSPM is available future queries for the shortest constrained path from a source point s 

to a target point t contained in the CSPM will take at most 0(n) time, where n is the 

number of vertices in the graph. Chapter 4 presents a description of the prototype pro­

grams for the implementation of the proposed algorithms. The actual implementation is 

done in the Java programing language. Finally in Chapter 5, we discuss the results of the 

experimental investigation and avenues for future extension of the proposed algorithms. 

2 
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CHAPTER 2 

TURN CONSTRAINED DISJOINT PATHS 

2.1 Turn Constrained Shortest Path 

In this chapter we consider the problem of planning multiple disjoint short length paths 

connecting a source point s to a target point t in a 2-D geometric graph such that the 

path has no turn angle more than a given value. 

Finding a shortest path connecting two vertices in a graph is a well explored problem 

and several algorithms for obtaining the solution have been reported [3, 4]. A path 

extracted from a geometric graph consists of a sequence of line segments. Two consecutive 

line segments in the path define the turn angle between them. In many applications, a 

path with a sharp turn angle may not be acceptable. For example, sharp turn paths can 

not be used by aerial vehicles. In fact most aerial vehicles can not make a turn of more 

than 30° [6]. While a variety of algorithms have been developed for constructing shortest 

path [3, 4], only a few algorithms have been reported addressing the turn constraint 

property. One of the important algorithmic results on turn constrained shortest path 

was developed by Boroujerdi and Uhlmann [1]. The algorithm reported in their paper 

[1] uses a graph transformation technique to solve the turn constrained shortest path 

problem in a 0(|£7|Zop|Vj) time. Their technique is to transform a given graph G into 

G" such that the shortest path in G' corresponds to a turn constrained shortest path in 

G. An overview of this technique can be briefly described as follows. 

For a given graph G(V, E), each edge e* G E become a vertex e't G V in the trans­

formed graph G'(V, E'). Two vertices e- and e'j in E' are connected by an edge h^ if the 

corresponding edges e, and ej in G are adjacent to each other. The weight of an edge h^ 

in E' is set to the sum of the weights of e* and e_j in E if the implied angle between e; and 

3 
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ej is less than or equal to the max turn angle 9max. If the implied turn angle between ê  

and ej is more than 9max then the weight of hij is set to infinity. 

Figure 2.1 illustrates an example of the original graph and the transformed graph. In 

the figure, two different paths connecting v\ to v6 are shown emphasized. Note that a 

sharp turn between e-j and eio at pivot vertex v5 in G is shown as an edge with weight 

infinity (oo) in G'. Thus a shortest path between two vertices in G' correspond to a 

9 

G r a P h G Transformed Graph G' 

Figure 2.1: Transform G to G'. 

shortest path without a sharp-turn, (< 9max), in G. The actual path can be computed by 

applying the standard Dijkstra's shortest path algorithm [4]. It can be observed that the 

number of edges in the transformed graph G' can become very high for a dense graph G. 

Let di be the degree of the pivot vertex Vi in G such that Vi G V where {vi\vi is a pivot 

vertex}. Then the number of edges in G' corresponding to Vi is I j . Hence the total 

number of edges in G' is: 

|B|-£E2(*) (2-1) 
Boroujerdi and Uhlmann [1] describe the transformation process for the purpose of ex­

plaining the algorithm. For actual implementation the graph transformation need not be 

explicitly done. While applying Dijkstra's shortest path algorithm in G, the implied sharp 

turn angle between consecutive edges can be checked on the fly. The turn constrained 

algorithm reported in [1] runs in time 0(|£'|Zog|V'|). 

4 
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2.2 Shortest Disjoint Path Pairs 

In the context of planning multiple paths connecting a start node s to a target node t, 

the notion of d i s jo in t -pa th becomes useful. A pair of paths are called node disjoint 

if they do not share nodes. If a pair of paths are not allowed to share edges then they are 

called edge disjoint. Note that node disjoint paths are also edge disjoint paths. Since 

we are interested in studying disjoint paths connecting two given nodes, start node s and 

target node t, we require the paths to share both s and t. The disjoint paths connecting 

s and t can be formally defined as follows. 

Definition 2.1 Given a graph G, a source node s, and a target node t, then a pair of 

paths connecting s and t is called node disjoint if the paths do not share any node in 

their interior. 

Node Disjoint Paths Edge Disjoint Paths 

Figure 2.2: Paths Types. 

Figure 2.2 illustrates a pair of disjoint paths connecting s and t. The path-pair 

shown in the left is node disjoint while the pair on the right side of the figure are just 

edge-disjoint. The problem of computing shortest pair of s-t-disjoint paths was first 

considered by Suurballe and Tarjan [13]. They reported an 0(mlog^i+m/n)n) algorithm 

for solving the problem, where m and n are the number of edges and the number of 

vertices respectively in the graph. Their technique is to convert the graph into a directed 

graph that satisfies the anti-symmetric property. Note that a graph is said to satisfy 

5 
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the anti-symmetric property if the presence of an edge (u, v) implies that an edge (u, u) 

is not present. The algorithm uses complicated data structures which are difficult to 

implement. Recently, a very simple algorithm to compute a pair of short length node-

disjoint paths connecting two vertices in a geometric network was reported in [8]. The 

algorithm runs in <9(n2) time and is very simple to implement. This algorithm uses a 

path-tagging technique for the construction of a path pair in a graph G. Since we will 

be using this technique for developing an algorithm for turn constrained path pair we 

briefly describe it below. 

Figure 2.3: Shortest Path from s to t. 

Consider a shortest path connecting s and t in a 2-d network as shown in Figure 2.3. 

The shortest path is shown highlighted with thick edges. Now consider the set of edges 

incident on the shortest path except those on s and t. We call these edges sleeve-edges. 

The sleeve edges are drawn dashed in Figure 2.4. The process of directing sleeve edges 

away from the path is called path-tagging. Let G1 denote the network obtained by path 

tagging the shortest s-t-path p\ in a geometric graph G. If we compute a shortest s-t-path 

P2 in G1 we find that px and pi are node disjoint; the computed path P2 is shown in Figure 

2.5. However in some situations this technique of straight forward path tagging may fail 

to work. This happens when the shortest s-t-path becomes a cut-path. A s-t-path P is 

6 
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Figure 2.4: Tagging of Shortest Path. 

Figure 2.5: Disjoint Path Pair. 

called a cut-path if a sub path of P, not containing s and t partitions the network into 

two disjoint components. Figure 2.6 shows a network in which the shortest s-t-path is a 

cut path. From Figure 2.6, it is clear that when the shortest s-t-path Pi is a cut path 

it is not possible to use it as a candidate for short length disjoint path-pair. A different 

kind of path tagging should be used in such cases and the detail algorithm is reported in 

[8]. 

7 
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Figure 2.6: Illustration of cut-path formation. 

2.3 Constrained Disjoint Path Pairs 

We are interested in the development of an efficient algorithm for constructing multiple 

(k) node disjoint short length paths connecting two nodes in a geometric graph such 

that the paths do not contain sharp turns. In particular, we start with the development 

of an efficient algorithm for constructing a pair of (k = 2) node disjoint paths without 

sharp turns. We combine the techniques for constructing the angle constrained shortest 

path and node disjoint paths, briefly reviewed in the previous two sections, to solve the 

problem which can be formally stated as follows. 

Constrained Disjoint Path-Pair Problem (CDPP) 

Given: A planar geometric graph G(V, E), start node s, target node t and maximum 

turn angle 0max. 

Question: Construct a short-length node disjoint path-pair p\ and P2 connecting s to 

t such that the paths are of short lengths and do not contain a turn angle greater than 

Vmax • 

To make sure that the path-pair do not have a turn angle greater than 6max we use the 

graph transformation method formulated by Boroujerdi and Uhlmann [1]. Furthermore, 

to make sure that the pair are disjoint in their interior and are of short length, we use the 

path-tagging technique presented in [8]. The approach is first to find the turn constrained 

shortest path P connecting s to t. We then check whether P is a cut-path or not for 

8 
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Figure 2.7: Constrained Path p\-. 

the given geometric graph. Figure 2.7 shows the shortest path from s to t, represented 

by a sequence of dashed edges. This path has a sharp turn that violates the constrain 

property. We use the graph transformation method from [1] implicitly in the graph and 

apply Dijkstra's shortest path algorithm to obtain the shortest s-t-path pi that does not 

have turn angle greater than 9max. This turn-constrained shortest path p\ is tagged by 

directing edges incident on the path away from it, edges incident at s and t are not 

tagged. The weight of the edges of path px are set to infinity. Let the resulting graph 

(after path tagging and infinity weight assignment) be G', Figure 2.8. We then compute 

Figure 2.8: Tagging of Constrained Path-pi. 

9 
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the turn constrained shortest path p2 between s and t in G'. The path p2 is edge disjoint 

due to the path tagging. The pair of paths p\ and p2 give the short length disjoint path 

pair between s and t. (If p\ is a cut path then the boundary of the graph is tagged by 

following the approach given in [8]). Figure 2.9 shows the final short length disjoint path 

pair. A sketch of the Turn Constrained Disjoint Path Pair algorithm is shown below. 

Figure 2.9: Constrained Disjoint Path Pair pi and p2. 

10 
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Turn Constrained Disjoint Path Pairs Algorithm (TCDPP) 

Input: Geometric planar graph G(V, E), start vertex s, target vertex t, 
and angle 9 

Output: Turn constrained disjoint pair of paths connecting s and t 
Step 1: Create an adjacency list for all consecutive vertices Vi,Vj,Vk that 

violate the angle constrain. 
Step 2: Find the shortest path pi from s to t in G for transitions that do 

not violate the angle constrain. 
Step 3: If pi is a cut path 

a. Assign counterclockwise direction to the boundary edge from s 
to t 

b. Perform Path Tagging on the path from s to t to obtain graph 
d 

c. Find the shortest path p^ from s to t in G\ for consecutive 
vertices Vi,Vj,Vk that do not violate the angle constrain. 

d. Replace p\ by pi 
endif 

Step 4: //Find the companion Path pi 
a. Perform path tagging to p\ in G to obtain G2 
b. Find the shortest path p2 from s to t in G2 for consecutive 

vertices Vi, Vj, Vk that do not violate the angle constrain. 
Step 5: The output is given by p\ and pi 

Theorem 2.1 The TCDPP algorithm can be executed in 0(nlogn) time. 

Proof: By using the implementation technique in [1] Step 1 and Step 2 can be done in 

0(\E\ log \V\). Whether or not a path is a cut path can be done in 0(\E\ logn) time by 

using point location algorithm from computational geometry [10]. Hence Step 3 takes 

0(\E\ logn) time. Since the network is available in doubly connected edge list form, the 

path tagging can be done in Od^l) time. The companion shortest path p^ can be found 

in 0(\E\ logn). Hence Step 4 takes 0(\E\ logn). This implies that the total time of the 

entire algorithm is 0(\E\logn). Since the network is planar, \E\ = 0(n). Hence the 

total time is 0(nlogn). • 

The above algorithm can be extended to generate a set of k disjoint path by modifying 

11 
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it so we can make multiple calls to step 4 and find additional companion paths. The 

modified algorithm is shown below 

Turn Constrained k-Disjoint Path Algorithm (k-TCDP) 

Input: Geometric planar graph G(V, E), start vertex s, target vertex t, 
angle 0, and k number of disjoint paths desired. 

Output: Turn Constrained disjoint paths connecting s and t 
Step 1: Create an adjacency list for all consecutive vertices Vi,Vj,Vk that 

violate the angle constrain. 
Step 2: Find shortest path Pi where i = 1, from s to t in Gj for transitions 

that do not violate the angle constrain. 
Step 3: If pi is a cut path 

a. Assign counterclockwise direction to the boundary edge from 
s to t 

b. Perform Path Tagging on the path from s to t to obtain graph 
Gx 

c. Find the shortest path px from s to t in Gx for consecutive 
vertices Vi,Vj,Vk that do not violate the angle constrain 

d. Replace Pi by px 

endif 
Step 4: //Find the companion disjoint path 

While (i is less than the desire path number and a companion path 
exists) do 

a. Perform path tagging to Pi in G to obtain Gi+\ 
b. Find the shortest path pi+\ from s to t in Gi+\ for 

consecutive vertices Vi, Vj, Vk that do not violate the angle 
constrain 

c. Increment i by one 
enddo 

Step 5: The output is given by pt 

It is straight forward to conclude that the k-TCDP algorithm executes in 0(A:|£7| logn) 

time. 

12 
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CHAPTER 3 

CONSTRAINT SHORTEST PATH MAP (CSPM) 

3.1 Shortest Path Map (SPM) 

Consider a collection of convex obstacles Qi, Q2,.... Qk in two dimensions. For computing 

collision-free shortest path from start points s to any other goal points gi,g2, •••,9m , the 

notion of the shortest path map (SPM) has been used very successfully [7, 11]. Broadly 

speaking, the shortest path map induced by a collection of obstacles and a source point 

s is the partitioning of the free space (space without obstacles) into regions such that 

the shortest path from s to any point in a region passes through the same set of obstacle 

vertices. We can elaborate the formation of SPM with some examples as follows. 

s • X 

V6 

.A 
' R, 

Q. 

V 5 S 

••••-'K 

^ 

/ 

* 6 

"""'-•••-h 

K 5 

Figure 3.1: SPM Graph (Single obstacle). 

13 
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First consider only one obstacle Qi and a source point s enclosed in a rectangular box 

as shown in Figure 3.1 (drawn by solid line segments). Let the list of vertices of obstacle 

Qx be vi, t>2, •••,Vm when the boundary is traversed in the counterclockwise direction. 

Consider two supporting rays emanating from s and supporting Q\ at vertices Vi and 

Vj. Such vertices are called support-vertices. Let /i, and hj be the points of intersection 

(hit-points) of the supporting rays with the enclosing rectangular box. The line segment 

(vi,'hi) on the supporting rays is referred to as a connecting-segment, shown in Figure 

3.1 as dashed segments. 

d(v,) 

Figure 3.2: Bisector. 

The boundary edges of Q\ can be distinguished into two kinds: (i) Those that are 

visible from the source point s are the visible-edges, and (ii) the ones that are not 

visible are the invisible-edges. The point b\ on the boundary of Q\ for which there are 

exactly two shortest paths from s, one each on either side of Qi, is called the bisector 

point. It is observed that the bisector point lies on an invisible edge. The invisible edge 

containing the bisector point is referred to as the far-edge. 

14 
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The locus of the points which are equidistant from s form a branch of a hyperbola 

[7] as shown in Figure 3.2. Let Vi and Vi+i be the vertices that define the far edge, then 

d(vi) will be the shortest counterclockwise distance from s to vt and d(vi+i) will be the 

shortest clockwise distance from s to 1̂ +1. If Vb is a point on the hyperbola branch, 

then let length(vi,Vb) be the length of the segment (i>j, t>&) and length(vi+i,Vb) be the 

length of the segment (vi+i,Vb), thus d(vi) + length(vi,vb) = d(vi+i) + length(vi+i,Vb) 

and length(vi+i, Vb) — length(vi,Vb) = d(v{) — d(vi+i) where vt and Vi+i are the foci of the 

hyperbola and Vb belongs to one of the two branches of the hyperbola. If d(vi) > d(ui+1), 

then Vb belongs to the branch closest to vi} otherwise it belongs to the branch closest to 

If we traverse the boundary of Q\ in a counterclockwise direction, starting from the 

vertex closest to s, the invisible edges encountered before reaching the far-edge are termed 

as group-1 invisible edges. The other invisible-edges that are encountered after the 

far-edge are termed as group-2 invisible edges. 

Connecting-segments can be defined for invisible edges other than the far edge. For an 

invisible edge (vi,Vi+i) in group-1, the corresponding connecting-segment (vi+i,hi+i) is 
> 

formed by considering the ray (vi, vi+i). On the other hand, for an invisible edge (i>i+i, Uj) 
> 

in group-2, the connecting-segment (vi,hi) is formed by considering ray (ui+1)Ui). It is 

noted that the hit point hi for constructing the connecting segments for the invisible 

edges could be either on the enclosing rectangle or on the bisector parabola. 

The set of connecting segments and hyperbola branches partition the free space into 

q regions RQ, i?i, i?2, ••-, Rq, where q is the total number of connecting segments. Corre­

sponding to each connecting segment (w,, hi) there is a unique free-region. A connecting 

segment will partition a region in at most two new smaller regions if and only if both Vi 

and hi are on the boundary of the original region, otherwise the connecting segment will 

join the obstacle boundary with the region boundary. 

Definition 3.1 The collection of free-regions formed by the set of connecting segments 

and bisector hyperbola branches is called the Shortest-Path Map (SPM) for source point 
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s. Figure 3.1 shows the shortest path map for one convex obstacle, where there are seven 

free regions. 

Figure 3.3: SPM Graph (two obstacles). 

For more than one obstacle, the corresponding shortest path map can be defined 

similarly. Support vertices are again defined by considering support rays. The support 

rays can hit either the boundary of the enclosing rectangle, the boundary of another 

obstacle or the bisector hyperbola branch. We also need to construct possible connecting 

edges by considering the connecting-segments incident to a vertex V{ as secondary source 

vertices. The shortest path map for two obstacles is shown in Figure 3.3, where there are 

10 secondary source points and 11 free regions. Figure 3.4 shows the shortest path map 

for many obstacles. The shortest path map satisfies several interesting properties which 

can be summarized as follows 

Property 3.1 There is exactly one bisector hyperbola branch for each convex obstacle. 

Property 3.2 The shortest path from the primary source point s to any point in a partic­

ular region Rj, of the shortest path map, traverses through the same sequence of secondary 
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Figure 3.4: SPM for many obstacles. 

source points. Consequently, the shortest paths from s to all points in a particular region 

Rj are identical except for the last segment in the path. 

Algorithm for Constructing S P M 

The basic approach for constructing the SPM was first reported by Lee and Preparata in 

[7]. Although the algorithm reported in [7] was designed for vertical line segment obsta­

cles, the idea can be carried easily to convex obstacles. Storer and Reif [11] developed an 

algorithm of time complexity 0(kn) for constructing the SPM, where k is the number of 

obstacles and n is the total number of vertices in all obstacles. The time complexity of 

this algorithm becomes 0(n2) when the number of obstacles k become 0(n). Finally, an 

Oinlogn) time algorithm was presented by Hershberger and Suri [5] that computes the 

SPM for polygonal obstacles. The algorithm presented in [5] uses complicated tools such 

as "conformal sub-division" and "artificial wave fronts" that are very difficult for practical 

implementation. However, this is asymptotically the fastest algorithm for constructing 

the SPM. 

Before we present a simpler algorithm to construct the SPM some definitions are 
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Figure 3.5: s Vertex Free Region. 

useful. A processed free-region is the set of points in the free-region for which the 

shortest path from the source vertex s is known. Initially, the visibility polygon VP(s) 

for the source point s is taken as the processed free-region. The front-boundary of the 

processed region consists of obstacle edges and connecting edges. The obstacle vertices on 

the front boundary incident on the connecting edges are precisely the set of unprocessed 

vertices. Figure 3.5 shows the initial processed free-region which is also the visibility 

polygon VP(s). 

When the processed free-region is determined, the shortest distance from the source 

vertex s to all obstacle vertices is maintained in the record of the corresponding vertex. 

In the front boundary of the processed free-region, the unprocessed vertex with the least 

distance from the source vertex s is referred to as the closest candidate vertex. In 

the Figure 3.5, vertex Vi is the closest candidate vertex for the indicated processed free 

region. If an obstacle in the front boundary is supported, then the bisector point can 

be found and the bisector hyperbola branch can be computed. Figure 3.6 shows the two 

hyperbola branches for the processed free region. 

To expand the processed free-region, the closest candidate vertex Vi is processed as 
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Figure 3.6: s Vertex Free Region with Bisector. 

follows. Let OutVP(vi) be the part of the visibility polygon from Vi that lies outside the 

currently processed free region FR(i-l). The term out-visibility polygon is also used 

to refer to OutVP{vi). In Figure 3.7, OutVPivi) is shown as the region filled with the 

'+' pattern. After computing the out visibility polygon OutVPivi) the processed free-

region FR(i-l) is expanded by adding OutVP(vi) to it and thus obtain FR(i). When 

the out-visibility polygon is added the connecting edges are also included. 

This step of updating the processed free-region is continued until all vertices are 

processed. The final result is the partitioning of the free region which in turn is the 

shortest path map (SPM) with respect to s. The processed free-region is maintained in 

a doubly connected edge list (DCEL) data structure [3] so that the faces of the map can 

be traversed efficiently. 

When a candidate vertex v^ is processed, new boundary vertices are added to the up­

dated free-region. During the updating task, the shortest distance from the source vertex 

s to the new boundary vertices is maintained on the record of the corresponding vertex. 

If d(vi) is the length of the shortest path from s to V{, then the length of the shortest 

path from s to a new boundary vertex Vb is given by d(vb) = d(yi) + length^, vt,). Note 
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Figure 3.7: Vi Generated Free Region. 

that the line segment connecting vt to Vb lies completely in the free-region. Furthermore, 

in the structure of Vb, a reference to the previous vertex in the shortest path from the 

source vertex s is recorded. This makes it easy to construct the actual shortest paths. 

Definition 3.2 A vertex v on the boundary of SPM(k) is called Typel if both boundary 

edges incident in v are the edges of the obstacle. In Figure 3.5, Vj is a Typel vertex. 

Definition 3.3 A vertex v on the boundary ofSPM(k) is called Type2 if it is an obstacle 

vertex and a connecting edge is formed by extending an obstacle edge incident at V{. In 

Figure 3.5 v^ is a Type2 vertex. 

Definition 3.4 An obstacle Q on the boundary of SPM(k) is called boundary sup­

ported if Q is tangentially supported by two connecting edges. 

A formal description of the Algorithm is as follows. 
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Visibility Based Algorithm for Shortest Path Map (SPM) 

Step 1: i. k = 0 
ii. SPM(k) = visibility polygon VP(s) 
iii. For all obstacle vertices v on the boundary of VP(s) do 

• v • dist = length(s, v) 
• v • prev = s 

/ /Construct bisectors 
Step 2: For boundary supported obstacle Q do 

• Construct bisector br for Q 

/ /Mark processed vertices 
Step 3: For all vertices v on the boundary of SPM(k) do 

if(u is Typel or v is Type2) 
v • processed — true 

Step 4: While all vertices are not processed do 
i. Find the closest candidate vertex vc in the SPM(k) 
ii. Find OutVP(wc) 

iii. SPM(k + 1) = SPM(k) U OutVP(vc) 
iv. k = k + 1 
/ /Construct bisector if any 
v. For all newly formed boundary supported obstacle Q 

• Construct bisector br for Q 
vi. For all newly formed vertices w on the boundary of SPM(k) 

• w • dist — v • dist + length(v, w) 
• w • prev = v 

vii. For all vertices v on the boundary of SPM(k) do 
• if((!t> • processed) &&; (v is Typel or v is Type2)) 

v • processed = true 

The time complexity of the Visibility Based Shortest Path Map Algorithm can be 

analyzed in a straightforward manner. The Visibility polygon from a point inside a 

polygon with holes can be done in 0(nlogn) time [12]. Hence Step 1 can be done in 

0(nlogn) time. The visibility polygon can be represented in a DCEL data structure 

within the same time complexity. Whether or not an obstacle is boundary supported 

can be determined by checking the angles between the connecting edges and the incident 
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obstacle edge. Once an obstacle is identified as 'boundary-supported', the corresponding 

bisector can be determined in time proportional to the number of vertices in the obstacle. 

Hence Step 2 takes 0{n) time. Whether or not a vertex v on the boundary of SPM(K) 

is Typel (or Type2) can be done in constant time by checking the edges incident on 

it. Hence Step 3 take 0(n) time. The closest candidate vertex vc can be determined 

by simply checking the distance to each vertex on the boundary of SPM(k) which takes 

0{n) time. OutVP(vc) can be computed in 0{nlogn) time by using a variation of the 

standard visibility polygon algorithm. The union of SPMK and OutVP(vc) can be done 

in 0(n) time. Hence Step 4 iii and Step 4 iv can be done in 0{n) time. Similarly each 

of Step 4 v, Step 4 vi, and Step 4 vii can be done in 0(n) time. The while loop in Step 

4 can execute in 0(n) time. Hence total time for Step 4 is 0(n2logn). This implies that 

the total time for the entire algorithm is 0(n2logn). 

3.2 Constrained Shortest Path Map (CSPM) 

The standard shortest path map (SPM) can be used for computing repeated shortest path 

queries from a fixed source vertex s to several target vertices. If we want to compute the 

shortest path between the source vertex s and a target vertex t such that the path does 

not contain sharp turns, then SPM can not be used. We want to construct a constrained 

shortest path map (CSPM) for a collection of convex polygonal obstacles such that it can 

be used to compute the shortest path that does not contain sharp turns. The problem 

can be formally stated as follows 
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Constrained Shortest Path Map Problem 

Given: (i) A collection of convex polygonal obstacles 

(ii) Source Vertex s 

(iii) Turn angle 6 

Question: Construct a constrained shortest path map (CSPM) such that it 

can be used to find the shortest path between s and any,target point t such 

that the path has turns no more than 9. The Path can take a turn only at the 

vertices. 

Figure 3.8: Illustrating Restricted Faces and Forbidden regions. 

Our approach for constructing the CSPM is to characterize forbidden regions in 

the standard SPM that can not be reached by any path that can turn only on vertices 

and for which the turn angle is no more than 6. Consider a face ft rooted at a secondary 

source vertex i>j. In Figure 3.8, the region bounded by Vi, hit hk, ffc, h is the face /j rooted 

at Vi. If the internal angle of /j at i>, is greater than 0 then not all points inside face 

fi are reachable by a path that turns at V{. Such a face which can not be completely 

reached by the shortest path from the source vertex s is referred to as a restricted face. 
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A restricted face / ; can be partitioned into two parts by a limit chord of the face. The 

limiting chord ViCi is such that the angle hiViCi is exactly equal to 9. The portion of fa 

not reachable by the shortest path with a turn at Vi greater than 9, is called a forbidden 

region, which is shown by a hashed pattern in Figure 3.8. The remaining portion of fa 

is the reacheable region. The figure also shows the forbidden region corresponding to 

the restricted face rooted at vertex Vj. To construct a constrained shortest path map 

(CSPM) we start from the standard shortest path map (SPM). Each face of the SPM is 

examined to determine whether or not it is a restricted face. If a face fa is restricted then 

it is partitioned into two parts to identify the corresponding forbidden component. Since 

the standard SPM is available in a doubly connected edge list form, restricted faces can 

be easily identified. A restricted face can be processed to extract the forbidden region by 

constructing the limit chord. The limit chord can be constructed in time proportional to 

the number of vertices in the restricted face. A formal sketch of the algorithm is listed 

as the Constrained Shortest Path Map Algorithm. 

Property 3.3 For points that lie within a forbidden region, no path exist in the CSPM 

back to s. 

Theorem 3.1 The constrained shortest path map can be constructed in 0(fa(n)) time, 

where n is the total number of vertices in the obstacles and fs(n) is the time for computing 

the standard SPM. 
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Constrained Shortest Path Map (CSPM) Algorithm 

Input: A collection of obstacles, start point s, maximum turn angle 9 

Output: Constrained Shortest Path Map. 

Step 1: Construct the standard shortest path map (SPM) with source vertex 
s and represent it DCEL form. 

Step 2: Identify and mark all secondary source vertices in the SPM 

Step 3: For each face in /, corresponding to secondary source vertex Vi do 
If (fi is a restricted face) 

partition fi by constructing the limiting chi 

Step 4: Output resulting map as CSPM 

Proof: Step 1 takes 0(fs(n)) time. Once the SPM is available in DCEL data structure, 

the secondary source vertex of a face can be determined by examining the value of the 

shortest path distance from s, (in each face, the vertex with the least distance from s is 

the secondary source vertex). Hence Step 2 takes 0{n) time. Whether or not a face fi is 

restricted can be determined by comparing the interior angle of the source vertex with 

the maximum allowed angle 9 and this takes constant time. The limiting chord and its 

use in partitioning the face can be done in time proportional to the number of vertices 

in the face. Hence Step 3 takes 0(n) time. The total time for the whole algorithm is 

0(fs(n)). D 

3.3 Extending CSPM to add partially forbidden region 

Definition 3.5 In a CSPM, a region partially bounded by bounding rectangle edges, ob­

stacle edges, limit chords and at least one connecting segment is called a partially for­

bidden region. 

Definition 3.6 A region in the CSPM containing a point for which there exist a path 

back to s in which all turn angles are less than 9 and it is not the shortest path is called 
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a reacheable region 

For any partially forbidden region, at least one of the limit chords connects with a 

connecting segment. Let us extend the chord until it intersects either an obstacle edge 

or the enclosing boundary edge. This creates two new regions, a forbidden region and a 

reachable region. A path exist from all points within the reachable region back to s. In 

the final CSPM as shown in Figure 3.9, for points that lie within a free region there exist 

a shortest path back to s, for points that lie within a reachable region a path exist back 

to s but this path will not be the shortest path. 

Figure 3.9: Final CSPM. 
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CHAPTER 4 

IMPLEMENTATION 

This chapter describes an implementation of the two prototype programs used to study 

the Turn Constrained Disjoint Path and the Constrained Shortest Path Map problems. 

The programs were implemented in Java, using version 1.4.2 

4.1 Constrained Disjoint Path Interface 

The implementation of this prototype permits the user to create a network consisting 

of obstacles which can be edited by adjusting the edges and vertices. Additionally, the 

source and target points can be changed. Once the network is created the user can 

initiate the execution of the program to generate the visibility edges and to calculate the 

shortest disjoint paths from the source vertex s to a target vertex t. 

4.1.1 Interface Description 

The main display window is implemented by extending the JFrame class component in 

javax.swing. The displayed graphical user interface is made up of several panels, as shown 

in Figure 4.1. The menu bar panel contains the File and Options menus. All other panes 

contained within the JFrame object are constructed by using the JPanel class. The left 

pane contains the buttons used to select and manipulate the network obstacles, vertices, 

and edges. The center pane contains the main display pane, which is the area where 

the network is drawn and manipulated. The right pane contains a text line to display 

the value of the maximum turn-angle as well as a scrollable text area used to display 

the path information. Finally, the bottom pane contains two buttons used to generate 

the visibility edges and the shortest constrained paths. Figure 4.2 shows the actual GUI 

frame as presented to the user. 
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Menu bar 

Left Pane Center Pane Right Pane 

Bottom Pane 

Figure 4.1: Constraint GUI Layout. 

-- - j w ] 

Figure 4.2: Constraint Program Main GUI. 

4.1.2 Icon Functionality Description 

Table 4.1 describes the functionality of various icons. The first column shows the actual 

icon and the second column contains a brief description. 

28 



www.manaraa.com

Table 4.1: Icon description. 
Icon 

* 

* » 

t.B 

-B ' 
ft^WB 

- • 

*-* 

S 
T 

Description 

Enables the select mode 

If the select mode is enabled, and an obstacle has been selected, the user 
can change the position of the obstacle by dragging it with the mouse 

Allows the user to add a new obstacle to the graph 

Used for removing the selected obstacle 
Used for splitting an edge of the selected obstacle. The splitting is done 
by introducing a new vertex 

Used for removing a vertex of the selected obstacle. The vertex closest 
to the mouse cursor is selected 
Used for updating the coordinates of the closest vertex (from the mouse 
cursor) of the selected obstacle 
For Moving the source vertex to a selected mouse cursor position 
For moving the target vertex to a selected mouse cursor position 

4.1.3 Program menu items 

The program has two menu items: File and Options. The File menu items enable the user 

to (i) clear the display screen, (ii) start a new network, (iii) retrieve and open previously 

saved files, and (iv) save a generated network to a file. A brief description of the File 

items is provided in Table 4.2. A similar description is provided for the Options items 

as described in Table 4.3. Figure 4.3 shows the GUI representation of the Options menu 

items. 

Table 4.2: File menu Items description. 
File Item Description 

New Clears the center display panel. Ready for a new network 
Open File Brings up a file selection panel, user can choose an existing 

graph file 
Save File Brings up a file save panel. The user can save a new file or 

replace an existing file 
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Table 4.3: Options menu Items description. 
Options Item 

Vertex id display 
Segment Direction 
Display Centroid 

Fill Barrier 
Display Angle 

Single Path 

Description 
When checked, the vertex id's are displayed 
Used for toggling a direction arrow on the edges 
Used for displaying a dot in the center of the obstacles 
For displaying obstacles filled with cyan color 
When checked the angle made by the incident edges at the 
vertex is displayed 
When checked, only one constrained path is displayed; 
otherwise a pair of constrained paths is displayed 
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Figure 4.3: Program Options. 

4.1.4 Visibility Edge Generation 

Once the user has set the coordinates of the source vertex s, target vertex t, and has 

added the obstacles needed to generate the network, the next step is to generate possible 

paths from s to t. The program generates all valid visibility edges between all vertex 

pairs. Note that no visibility edge may cross an obstacle. The visibility edges are the 

candidate path edges for the shortest constrained paths from s to t. Figure 4.4 shows 

a network in which the visibility edges have been generated. It is observed that the 
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Figure 4.4: Visibility Edges. 

generated network need not be planar. 

4.1.5 Constrained Path Generation 

The final step is to construct the constrained disjoint paths, which is done by applying 

the algorithm discussed in Chapter 2. The resulting paths are highlighted by the program 

and the text area on the right side of the pane is updated with the corresponding path 

information. Depending on the options selected, the program generates either a single 

angle-constrained path, or a pair of disjoint angle-constrained paths. Figure 4.5 shows a 

sample output for a pair of short-length disjoint paths. 

4.2 Constrained Shortest Path Map Interface 

The Constrained Shortest Path Map provides an implementation that allows the user 

to specify the obstacles and the position of the source point s. The program partitions 

the free-space into regions such that the shortest path to any point inside a region goes 

through the same sequence of vertices. For each vertex, the program stores the magnitude 
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Figure 4.5: Constrained Paths. 

of the shortest path from s and also the record of the previous vertex in the shortest path. 

4.2.1 Interface Description 

As in the previous program implementation, the main display window is implemented 

by extending the JFrame class component in javax.swing. The program has a secondary 

display window that opens to present the partitioning option. The main display area 

is used to create and edit the network, while the secondary display window is used to 

partition the generated network. Once a network is partitioned, it can be saved and 

reopened in the main window to output the shortest paths for the varying target points 

t to the stationary source point s. 

The main GUI is made up of several panels as shown in Figure 4.6. The menu bar 

contains three selections: File, Options and Help sub-menus. All other panels are within 

the JFrame object and are constructed from JPanel class objects. The left pane contains 

the buttons used to create and edit the network. It is possible to add obstacles and edit 

their edges and vertices as well as split faces and join obstacles. Not all the buttons 
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Menu bar 

Left Pane Center Pane Right Pane 

Bottom Pane 

Figure 4.6: Planar GUI Layout. 

Menu bar 

Display Pane Right Pane 

Bottom Pane 

Figure 4.7: Partition GUI Layout. 

are functional, buttons that are functional will change color to cyan when selected. The 

center pane contains the main display pane. This is the area in which the network will be 

drawn and manipulated. The right pane contains two text boxes: one is used to display 

the cursor's x-y coordinate as it moves over the center pane and the second one is a large 
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scrollable text area which is updated with the network information. Finally, the bottom 

pane contains two buttons: the partition button which will open the secondary window 

to present the partition GUI, and the Shortest Distance button which will trigger the 

program to calculate a path from the source vertex to the target vertex for the network 

that has been previously partitioned. 

The secondary display window also contains several panels as shown in Figure 4.7. 

The menu bar contains the File and Options menus. The center pane is again the main 

display pane, and the right pane contains a scrollable text area that displays the network 

information. Finally, the bottom pane contains a single button that initiates the network 

partition action. Figure 4.8 and Figure 4.9 show the actual GUIs presented to the user 

by the program. 
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Figure 4.8: Planar Program Main GUI. 

4.2.2 Icon Functionality Description 

Table 4.4 and Table 4.5 show the description of the icons functionality. The first col­

umn shows the image of the icon and the second column gives a brief description of its 

functionality. 
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Figure 4.9: Planar Program Partition GUI. 

Table 4.4: Icon description. 
Icon 

+•-» 

* / * 

- • 

A* 

+<> 

< > * 

4> 

Description 

When enabled, the user can add an edge to a selected face. One end 
of the added edge is the start vertex of the edge closest to the mouse 
cursor. The other end of the added edge will be the current position 
of the mouse cursor 

When enabled, the user can split the edge closets to the cursor and 
add a new vertex to the network 

When enabled, it allows the user to delete the vertex of the selected 
face which is closest to the cursor position when the left mouse 
button is pressed 

If the left mouse button is pressed, the closest vertex position to 
the cursor will be updated to the cursor's x-y coordinates 

After the left mouse button is pressed, the program will add a 
triangular obstacle to the network. The base of the obstacle will 
be centered on the cursor's x-y position 

No Functionality Implemented 

When enabled allows the user to split the selected face into two new 
faces. An obstacle face can not be split 
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Table 4.5: Icon description continued. 
Icon 

C 

K 

s 
T 

+ 
+ 
f 
f 

Description 
Create a connection between two vertices 

When enable the user can select a face on the graph. Used as 
preliminary step before splitting face and edges 
Updates the x-y coordinates of the source vertex to the current cursor 
location 
Updates the x-y coordinates of the target vertex to the current cursor 
location 

No Functionality Implemented 

No Functionality Implemented 

No Functionality Implemented 

No Functionality Implemented 

Table 4.6: File menu Items description. 
File Item 
Open File 

Save File 

New 
Export to Xfig 

Description 
Brings up a file selection panel, user can choose an existing 
graph file 
Brings up a file save panel, the user can save a new file or 
replace an existing file 
Clears the center display panel, ready for a new graph 
Brings up file save panel, the file is saved in Xfig file format 

Table 4.7: Options and Help menu Items description. 
Options I tem 

HalfEdge Display 
Help Item 

Help Contents 

Description 
When checked displays the half edges individually 
Description 
Access 'to help information 

4.2.3 Program Submenu Description 

The program's main GUI has three menu selections: File, Options, and Help. The File 

menu items enables the user to retrieve and open a previously saved file or to save the 

currently displayed network to a file, or to clear the display-screen. It also has an option 
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to export the network into Xfig format. A brief description of the File items is given in 

Table 4.6. The Options and Help items are described in Table 4.7. Figure 4.10 shows 

the GUI representation of the Options sub-menu items. 
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Figure 4.10: Planar Program File Options. 

The secondary program GUI also has File and Options menus. The File menu has 

a single function that allows the user to save a network that has been partitioned. The 

Options menu lets the user enable/disable a step function. A detailed description of the 

sub menus is shown on Table 4.8. Figure 4.11 shows the GUI with the Options menu as 

presented to the user. 

Tal 
File I tem 

« Save File 

Options I tem 
Enable Step Mode 

)le 4.8: File and Options menu Items description. 
Description 
Brings up a file save panel, the user can save the 
partitioned file 
Description 
Displays each step as program processes the vertices 
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Figure 4.11: Planar Program Partition Options. 

4.2.4 SPM Implementation 

The partitioning algorithm relies on maintaining a planar graph structure. The informa­

tion is stored in four data structure implemented as Java classes: Node, HalfEdge, Face, 

and Obstacle. They are used by the DCEL class which contains the support functions 

needed to create and modify a planar graph. The DCEL class has many support func­

tions that include the following. 

public boolean addEdge(int x, int y) - Adds a node with coordinates (x,y). If 

necessary, it also adds the half-edges adjacent to the node. 

public void splitEdge(int x, int y) - This function is used to split an existing edge 

into two parts. When an edge is split, (x, y) will be the coordinates of the new node used 

to split the edge. It is noted that when an edge is split, two half-edges are partitioned 

into four half-edges. 

public Face split Face (HalfEdge edgel , HalfEdge edge2) - This function is used 

to partition a currently selected face into two parts. The actual splitting is done by 
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connecting two non-consecutive vertices of the current face by a pair of half-edges. 

public boolean connectPaths(HalfEdge e l , HalfEdge e2) - This function is used 

for adding an edge between two selected nodes. It is noted that when an edge is added 

it can either split a face or it can combine two holes. So if the added edge connects two 

nodes on the boundary of the same face then it splits that face. On the other hand if the 

nodes are on different holes than the connecting edge combines those holes into one. 

' ~T"> -

f * - -

•mm 

Figure 4.12: Graph G Before Partition. 

Figure 4.12 shows an obstacle configuration, together with source vertex s and target 

vertex t, using the implemented functions of the DCEL data structure. When the par­

titioning of the free-space is completed by adding the connecting edges and the bisector 

hyperbola branches, we obtain the network shown in Figure 4.13. Now it is very conve­

nient to compute the shortest path from the source vertex s to any query target vertex t. 

All the user has to do is to pick the target vertex t with a mouse-click and the program 

constructs the shortest path from s to t. One example of the shortest path is shown in 
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Figure 4.14. 
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Figure 4.13: Graph G Partitioned into Regions. 

Figure 4.14: Shortest Path from s to t. 
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CHAPTER 5 

CONCLUSION 

In this thesis we presented an algorithm for computing Turn-Constrained k node-Disjoint 

Paths connecting two vertices in a geometric network. The time complexity for the 

algorithm is 0(k\E\logn), where \E\ is the number of edges in the network and n is 

the number of vertices. This algorithm is developed by extending the angle constrained 

path computation algorithm and disjoint path-pair algorithm reported in [1] and [8], 

respectively. The turn-angle constrained algorithm developed by Suurballe and Tarjan 

[13] is efficient theoretically but very difficult to implement due to the use of complicated 

data structures. Our algorithm combines the simpler disjoint path planning algorithm 

given in [8] with the graph transformation technique in [1] to obtain an algorithm that 

is simple for implementation. 

We presented an implementation of the proposed Turn-Constrained k node disjoint 

path algorithm, done in the Java programming language. The prototype of the imple­

mentation has a graphical user interface GUI, that helps the user to compute k-disjoint 

paths by varying several parameters. The user can generate, modify, edit, save, and re­

trieve the network by dragging, moving and clicking the mouse buttons. We executed the 

implemented program on several networks. The generated solutions show that the im­

plementation is indeed producing short-length paths that are node disjoint and without 

sharp turns. 

The second problem we presented in this thesis is the construction of the shortest 

path map (SPM), which can be used for computing the shortest path from a fixed source 

vertex point to several query target points. We present a generalization of the standard 

shortest path map called the turn-constrained shortest path map. The turn-constrained 
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shortest path map can be used for constructing shortest path from a fixed source vertex 

s to varying query vertex q such that the generated paths do not have sharp turns. 

The presented algorithm is based on the repeated construction of the visibility polygon 

from the front nodes. The presented algorithm can be implemented in a straight forward 

manner. In fact, we presented an implementation of a prototype program for the standard 

shortest path map. The implementation of the constrained version is not complete but 

is in progress. 

Several extensions of the proposed algorithms can be made in the future. The turn-

constrained disjoint path algorithm presented in this thesis does produce very short length 

paths. But we have not been able to prove that the path pair are of shortest total length. 

It would be interesting to settle this issue. 

The constrained shortest path map algorithm presented in this thesis can be used 

only in the presence of polygonal obstacles in two dimensions. A natural extension 

would be to look for the construction of shortest path maps in three dimensions. Since 

the problem of constructing shortest path in three dimensions in known to be intractable 

[2], the corresponding shortest path map construction problem in three dimensions should 

be very difficult. As a first step in this direction we plan to explore the construction of 

shortest path map in terrain surface which is generally viewed as two and half dimensions. 
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